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NEWS AND VIEWS 
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One of the most complicated connections between 
actin and the plasma membrane is the focal adhesion, 
a complex of proteins and lipids that forms at sites 
where cells attach to the extracellular matrix. A major 
protein component of focal adhesions is vinculin. As 
with other components of the focal adhesion com- 
plex, vinculin illustrates the apparent redundancy of 
proteins that mediate the connection of actin to the 
plasma membrane. During the past 5 years there 
have been several studies examining the role of 
vinculin in cell function. The purpose of this article is 
to discuss these findings and present an integrated 
model of vinculin’s role in the cell. 

Vinculin associates with talin and alpha-actinin via 
its N-terminal region (Burridge & Mangeat, 1984; 
Wachsstock et al., 1987). It also self-associates to 
form head-to-tail dimers (Molony & Burridge, 1985; 
Johnson & Craig, 1994). There is further convincing 
evidence that vinculin contains an actin-binding 
domain (Menkel et al., 1994; Johnson & Craig, 
1995). Vinculin is also a ligand for the focal adhesion 
complex protein paxillin (Turner et al, 1990). 
Furthermore, vinculin binds phospholipid bilayers 
non-covalently with an apparent two-step mechan- 
ism involving both electrostatic interactions with 
acidic head groups and insertion into the hydro- 
phobic domain of lipid bilayers (Niggli & Burger, 
1987). It has also been shown in in vitro lipid 
photolabelling studies that vinculin as well as talin 
directly inserts into the hydrophobic region of lipid 
bilayers (Goldmann et al., 1992; Niggli et al., 1994). In 
addition, vinculin interacts with phosphatidylinosi- 
tol-4,5-bisphosphate (Fukami et al, 1994). Therefore, 
vinculin binds the lipid bilayer directly through one 
of several mechanisms and also binds actin directly. 
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Alternatively, vinculin may also bind to one of 
several proteins such as talin or alpha-actinin, which 
themselves may bind either directly to lipids or to 
the intracellular domain of integrin. These proteins 
or their complexes may, then bind actin (Kaufmann 
et al., 1992; Fritz et al., 1993). 

Chicken (82% cDNA; 95% protein), human (100% 
cDNA; 100% protein), and mouse (92% cDNA; 99% 
protein) vinculin have been cloned which show the 
indicated similarities between species (Price et al., 
1987; Weller et aI., 1990; Co11 et al., 1995). Both 
chicken and human vinculin contain 1066 amino 
acids. There is a single vinculin gene, but a 
difference in mRNA splicing (at amino acid 915) 
gives rise to the 150 kDa metavinculin variant in 
muscle cells. In nematode muscle, a vinculin homo- 
logue, identified by its amino acid sequence as 
similar to chicken vinculin, has been localized to 
dense plaques in the body wall muscle (Barstead & 
Waterston, 1989). The central region of vinculin 
contains three repeats of approximately 113 amino 
acids. The region N-terminal to the repeat region 
contains the talin binding domain. This domain is 
highly conserved. The C-terminal region to the 
repeats contains a proline-rich sequence thought to 
be important in separating the globular head of 
vinculin from its extended tail (Price et al., 1989). The 
last 170 ammo acids are thought to be important in 
the ability of vinculin to self-associate (Milam, 1985). 
The C-terminal of chicken vinculin has a p1 of 9.7, 
compared with a p1 of 5.9 for the intact protein 
(Coutu & Craig, 1988). This is thought to explain the 
ability of vinculin to interact directly with acidic 
phospholipids, and probably with the plasma mem- 
brane (Tempel et al., 1995). Vinculin, as well as 
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integrin and paxillin, are all substrates for tyrosine 
phosphorylation by pp60-“‘” (Sefton et al., 1981; 
Maher et aI., 1985; Glenney & Zokas, 1989). 

The role of vinculin in viva has been studied in 
several species and cell lines. This is summarized in 
Table 1. Barstead and Waterston (1991) were the first 
to examine vinculins’ function using a genetic screen 
designed to recover mutations in the vinculin gene 
of the nematode Caenorhadbitis eleguns. Nematodes 
lacking vinculin had arrested development and 
disorganized muscle tissue indicating that vinculin 
is essential for normal muscle function. Rodriguez 
Fernandez and colleagues (1992) then showed that 
overexpression of vinculin in mouse 3T3 cells 
reduced cell locomotion. In another study, Rodriguez 
Fernandez and colleagues (1993) reduced vinculin 
expression in 3T3 cells using antisense constructs. 
The transfected cells exhibited a round phenotype 
with fewer vinculin-positive focal contacts, and 
displayed increased motility. Grover and colleagues 
(1987) treated mouse F9 embryonic carcinoma cells 
with the mutagen ethanemethylsulfonate to produce 
a adhesion-defective cell line, called 5.51. Samuels 
and colleagues (1993) found that 5.51 cells lacked 
vinculin and showed that transfection of chicken 
vinculin restored cell adhesion and normal actin 
organization. (Full restoration of cell spreading was 
not achieved probably because other genes were also 
mutated, for example, uvomorulin expression is 
reduced to 3040% of normal in these cells; 
Adamson et al., 1990). Goldmann and colleagues 
(1995) showed that 5.51 cells contained J3 1-integrin, 
talin, and a-actinin that were 1ocaIized in patches 
associated with the plasma membrane. They also 
observed that filopodia and lamellipodia in 5.51 cells 

were less stable in comparison to the wild-type cells. 
Varnum-Finney and Reichardt (1994) generated 
vinculin-deficient isolates of PC12 cell lines by 
transfection with vectors expressing antisense vincu- 
lin RNA. They showed that neurite outgrowth on 
laminin was reduced and that the formation of 
filopodia and lamellipodia was normal but less 
stable compared to PC12 control cells. Recently, Co11 
and colleagues (1995) created a F9 cell variant (called 
F9vin(- / -)) in which both copies of the vinculin 
gene were disrupted using homologous recombina- 
tion. The loss of vinculin in these cells resulted in 
rounded morphology, decreased adhesion, and in- 
creased motility. Interestingly, the F9vin(- / -) cells 
formed focal adhesions which, based on fluorescence 
intensity measurements, contained larger amounts of 
talin, alpha-actinin, and paxillin (Volberg et al., 1995). 

All of these studies suggest that vinculin is 
important for cell attachment and spreading. The 
presence of focal adhesion complexes in both of the 
vinculin-deficient F9 cells lines (5.51 and F9vin(- / 
-)) suggest that there are other mechanisms for the 
formation of focal adhesions in the absence of 
vinculin. A likely candidate for a focal adhesion 
complex protein to be involved in an alternative 
linkage is talin (isenberg & Goldmann, 1992). The 
differences in the ability of vinculin and talin to self- 
associate and interact with other cytoskeletal pro- 
teins might be the key. For example, both talin and 
vinculin form dimers (Goldmann et al., 1994; 
McLachlan et aZ., 1994; Johnson & Craig, 1995). 
Nuckolls and colleagues (1992) microinjected anti- 
bodies against talin into fibroblasts which inhibited 
spreading and migration, and disrupted recently 
formed focal adhesions and stress fibres. The binding 

Table 1. Modification of vinculin in various cell lines and the phenotypical expression. 

Organism/cell type Mechanism of disruption 

Nematodes Caenorhadbitis elegans Vinculin knockout 
(Barstead & Waterston, 1991) 
BALB/c 3T3 cells Vinculin overexpression 

(Rodriguez Fernandez et al., 1992) 

Phenotype 

Elongation disrupted; disorganized muscle 

Altered dynamic properties 

BALB/c 3T3 cells Vinculin antisense transfection Round with smaller and fewer plaques 
(Rodriguez Fernandez et al., 1993) 

Embryonal carcinoma cells F9 (5.51) and Vinculin chemically Round, no lamellipodia and actin stress 
mutagenized fibres 

Embryonal carcinoma cells F9 (5.51 vin3+4) Exogenic vinculin gene Exhibit actin stress fibres, filopodia, 
(Samuels et al., 1993; Goldmann et al., 1995) expression and lammelipodia 

PC 12 neurite cells Vinculin antisense transfection Exhibits less stable filopodia and 
(Varnum-Finney & Reichardt 1994) lamellipodia 
Embryonal carcinoma cells F9 (~229) F9 vinculin knockout Round, locomotion 
(Co11 et al., 1995; Volberg et al., 1995) F9 vinculin (- / -) Shape, adhesion, locomotion; increased 

talin, paxillin, at focal adhesion 
Embryonic stem cells (Co11 et al., 1995) ES vinculin (- / -) Shape, adhesion 
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of talin to integrins may be under the control of 
phosphorylation caused for example by interleukin- 
1-p (Qwarnstrom et al., 1991), and talin’s function as 
a linker protein can be reversed by the calcium- 
dependent protease calpain (Turner et al., 1989). 
Originally, it was thought that talin was linked to 
actin filaments through other proteins such as 
vinculin and a-actinin, but talin has also been shown 
to bind directly to actin (Goldmann & Isenberg, 
1991). There are therefore two independent links of 
actin filaments to integrins via talin and vinculin, 
and both links are found in the same focal adhesion 
sites. In addition, vinculin binds to a-actinin, an 
actin cross-linking protein, while talin does not. 
Finally, the identification of sites on talin that binds 
vinculin suggests that dimers of talin may them- 

selves be linked by vinculin (Gilmore et al., 1993). 
Therefore, our interpretation is that talin supports 
linear membrane extension (i.e. filopodia) driven by 
actin polymerization. Vinculin, with its greater 
linking (through a-actinin and talin) or force-trans- 
ducing properties, would support the broader, more 
stable cytoplasmic extensions of lamellipodia. In Fig. 
1 we present a model showing how vinculin and 
talin may interact with actin and the plasma 
membrane in the focal adhesion complex. Since 
vinculin and talin are known components of the 
pathways that link the cytoskeleton to the cell 
membrane and regulate cell motility, the deletion 
or functional mutation of both proteins should 
prevent the cell from adhering and forming focal 
contacts. 

N 
8 

I 

V 
lntegrin 

V 
lntegrin 

------___---__-------------- 

1 Proline rich 2 Vinculin-Actin 3 Vinculin-Paxillin 4 Vinculin-Talin 
regions: binding site: binding sites: binding sites: 
VinculinAA 837-847 AA893-1016 AA 978-1000 (Vinculin) a) AA 1539-2170 (Talin) 

860-878 (Vinculin) AA 1 OOISI 028 (Vinculin) AA 1673-2541 (Talin) 
Talin AA-I 500 b) AA 40-325 (Vinculin) 

(possibly two?) 

5 Talin-lntegrin 6 Talin-Actin 7 8 
binding sites: 

Vinculin-phosphorylation Vinculin-alpha-actinin 
binding sites: site: AA 822 

AA 434-2541 (T) 
binding site(s): 

AA 434-2541 (Tab) 
(possibly two?) 

AA l-l 07 (Vinculin) 
(possibly two?) AA 713-749 (alpha- 

actinin) 

Annotation: 
200 kDa TALIN tail fragment AA 434-2541. 

47 kDa TALIN head fragment AA 1433. 
32 kDa VINCULIN tail fragment AA 858-1066 
90 kDa VINCULIN head fragment AA i-857. 

Fig. 1. Model of vinculin and talin interactions at the plasma membrane. We present a detailed model of vinculin and 
talin which is based on recent experimental and theoretical data. According to Tempel and colleagues (1995) two regions 
in the vinculin molecule (amino acids 978-935 and 1020-1040) and three regions in the talin molecule (amino.acid 2139, 
287-342, and 385406) are good candidates for lipid interactions. It is, therefore, likely that (vinculin-talin)-lipid and 
(vinculin-talin)-actin interactions are the crucial activities needed for cell spreading and focal contacts, and that the loss of 
vinculin or talin may be compensated by one or more proteins. 
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